Matrices

37
Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 3\end{array}\right], \vec{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$, and $\vec{b}=\left[\begin{array}{l}-2 \\ -1\end{array}\right]$.
37.1 Compute the product $A \vec{x}$.
37.2 Write down a system of equations that corresponds to the matrix equation $A \vec{x}=\vec{b}$.
37.3 Let $\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$ be a solution to $A \vec{x}=\vec{b}$. Explain what x_{0} and y_{0} mean in terms of intersecting lines (hint: think about systems of equations).
37.4 Let $\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$ be a solution to $A \vec{x}=\vec{b}$. Explain what x_{0} and y_{0} mean in terms of linear combinations (hint: think about the columns of A).

38

$$
\text { Let } \vec{u}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \vec{v}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right], \vec{w}=\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right] .
$$

38.1 How could you determine if $\{\vec{u}, \vec{v}, \vec{w}\}$ was a linearly independent set?
38.2 Can your method be rephrased in terms of a matrix equation? Explain.

$$
\left[\begin{array}{rrr}
1 & -3 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\vec{b}
$$

39.1 If $\vec{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, is the set of solutions to this system a point, line, plane, or other?
39.2 If $\vec{b}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$, is the set of solutions to this system a point, line, plane, or other?

Let $\vec{d}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ and $\vec{d}_{2}=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$. Let \mathcal{P} be the plane given in vector form by $\vec{x}=t \vec{d}_{1}+s \vec{d}_{2}$. Further, suppose M is a matrix so that $M \vec{r} \in \mathcal{P}$ for any $\vec{r} \in \mathbb{R}^{2}$.
40.1 How many rows does M have?
40.2 Find such an M.
40.3 Find necessary and sufficient conditions (phrased as equations) for \vec{n} to be a normal vector for \mathcal{P}.
40.4 Find a matrix K so that non-zero solutions to $K \vec{x}=\overrightarrow{0}$ are normal vectors for \mathcal{P}. How do K and M relate?

